Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fast growth and large size generally increase survivorship in organisms with indeterminate growth. These traits frequently covary, but where they do not, trade-offs often exist in the behavioral choices of organisms. Juvenile bicolor damselfishStegastes partitusthat settle on coral reefs at larger sizes generally experience enhanced survivorship but have slower juvenile growth rates. We hypothesized that differences in behavior may mediate this trade-off. To test whether it is trait-related behaviors or the traits themselves that enhance early survival, we combined individual behavioral observations with otolith (ear stone)-based daily growth measurements for juvenileS. partitusin the Florida Keys. Foraging, sheltering, and chasing behaviors of 256 fish were measured during 5 different months (2008–2009), and patterns of differential survival were similar to those from a 6-year (2003–2008) recruitment time series. We found a trade-off between sheltering and foraging that significantly explained patterns in size-at-settlement: damselfish that settled at larger sizes spent less time sheltered and more time feeding high in the water column. Juvenile growth rates were unrelated to any of the sheltering–foraging behaviors but instead were inversely related to adult conspecific density. Damselfish that settled near higher densities of conspecifics were subjected to increased territorial chasing. Chasing intensity interacted with settlement size such that large juveniles who were chased more frequently exhibited slower growth rates, whereas smaller settlers did not experience this energetic cost. Thus, the dominant survival strategy ofS. partitusis to settle at a large size and spend more time foraging high in the water column while dodging conspecifics at an energetic cost to their growth rates. Size-at-settlement is determined during the larval period and after settlement, this trait is key to subsequent behaviors and the strength of trait-mediated survival. Understanding how somatic growth, body size, and survival are intertwined in early life is necessary to help explain population dynamics.more » « less
-
Barsoum, Mark (Ed.)The Re-Envisioning Culture Network is a space dedicated to transforming the culture of undergraduate biology education to bolster Black student experiences and outcomes. This paper provides the REC Networks call to action for the field to engage in cultural transformation processes.more » « less
-
Abstract Turnover in species composition and the dominant functional strategies in plant communities across environmental gradients is a common pattern across biomes, and is often assumed to reflect shifts in trait optima. However, the extent to which community‐wide trait turnover patterns reflect changes in how plant traits affect the vital rates that ultimately determine fitness remain unclear.We tested whether shifts in the community‐weighted means of four key functional traits across an environmental gradient in a southern California grassland reflect variation in how these traits affect species' germination and fecundity across the landscape.We asked whether models that included trait–environment interactions help explain variation in two key vital rates (germination rates and fecundity), as well as an integrative measure of fitness incorporating both vital rates (the product of germination rate and fecundity). To do so, we planted seeds of 17 annual plant species at 16 sites in cleared patches with no competitors, and quantified the lifetime seed production of 1360 individuals. We also measured community composition and a variety of abiotic variables across the same sites. This allowed us to evaluate whether observed shifts in community‐weighted mean traits matched the direction of any trait–environment interactions detected in the plant performance experiment.We found that commonly measured plant functional traits do help explain variation in species responses to the environment—for example, high‐SLA species had a demographic advantage (higher germination rates and fecundity) in sites with high soil Ca:Mg levels, while low‐SLA species had an advantage in low Ca:Mg soils. We also found that shifts in community‐weighted mean traits often reflect the direction of these trait–environment interactions, though not all trait–environment relationships at the community level reflect changes in optimal trait values across these gradients.Synthesis. Our results show how shifts in trait–fitness relationships can give rise to turnover in plant phenotypes across environmental gradients, a fundamental pattern in ecology. We highlight the value of plant functional traits in predicting species responses to environmental variation, and emphasise the need for more widespread study of trait–performance relationships to improve predictions of community responses to global change.more » « less
An official website of the United States government
